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Abstract - Modulation recognition has been studied 
for decades with numerous amounts of papers 
published. Modulation classifiers are developed under 
assumptions and may not be robust in some 
applications.  This paper studies and simulates several 
popular digital modulation recognition methods and 
discusses the pros and cons of those algorithms based on 
the robustness of the modulation feature and algorithm 
fundamentals. 
 

Index Terms � electronic warfare, communication, 
modulation recognition, signal classification, algorithm 
comparison, modulation feature. 
 

I. INTRODUCTION 
 

Modulation recognition is an important subject not 
only in commercial application but also in classifying 
emitter types for military electronic support cases [1-4].  
Modulation recognition is a non-cooperative 
communication practice which, in general, starts with 
signal processing to remove center frequency, re-sample 
the signal, synchronize baud rate and carrier phase, and 
equalize the channel distortion. It is followed by 
modulation feature extraction to obtain unique 
information related to amplitude, phase, and frequency. 
Then, feature recognition is applied by using logic 
analysis to match features to known templates, or using 
statistical analysis to find a solution based on 
probabilities.  Therefore, based on the techniques being 
used, a successful modulation recognition technique 
may depend not only on factors such as: signal 
bandwidth, available signal length, digitization method, 
number of samples per symbol, modulation types, 
transmission environment, signal noise ratio, frequency 
stability, processing power, processing time, 
implementation cost, and dimension of confusion 
matrix, but also on qualities of baud rate estimation, 
pulse synchronization, pulse re-sampling, carrier 
synchronization, etc. Many publications assume to have 
perfect knowledge of center frequency, baud rate, and 
pulse shape so that a fair comparison of different 
algorithms becomes a challenge.  To compare 
algorithms based solely on signal to noise ratio (SNR) 
and probability of success may have little value.  

Fundamental similarities and differences between the 
algorithmic bases should be explored. 
 

II. ALGORITHM COMPARISON 
 

The modulation recognition includes converting the 
analog RF signal to a digital IF signal, extracting 
modulation features, and recognizing modulation types.  
Some classifiers can extract modulation features directly 
from an IF signal.  But, in most cases, a coarse 
estimation is needed to convert IF signal to I and Q 
components, and extract modulation features with the 
presence of pass-band signal residuals such as center 
frequency offset (CFO) or timing errors.  Many 
classifiers extracts features by assuming to have perfect 
base-band symbols since those features are very 
sensitive to pass-band disturbances.  The modulation 
recognition is conducted by searching the best match 
between modulation features and given templates.  The 
result of modulation recognition could be a confusion-
matrix, which is a table of statistical values obtained 
with a specified signal-to-noise ratio (SNR).  This table 
provides the values of probability-of-success in respect 
to a list of candidate modulation types.  The result of 
modulation recognition could also be a set of curves 
representing candidate modulation types.  Each curve 
gives the probability-of-success versus SNR for a given 
modulation type.  Since modulation classifiers are 
developed under various assumptions and objectives, 
the algorithm comparison is nontrivial.  Probability-of-
success will be a performance measurement only if two 
classifiers are developed under the same assumptions.  
Probability-of-false-alarm should also be included to 
measure the failures that an unknown type is forced to a 
know template. Therefore, fundamental differences 
between the algorithms should be studied. 
 
A.  Phasor Variation Analysis Classifier 
 

Phasor analysis approach utilizes the phase variation 
and amplitude variation as features in modulation 
recognition.  In this approach, the IF signal is down-
converted to base-band and the symbols are extracted 
for analysis.  Many algorithms assume the unknown 
signal is transmitted through an ideal channel so that the 
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white Gaussian AWGN is the only concern in 
estimation error, some of the algorithms, such as 
Azzouz and Nandi�s modulation classifier [5,6], also 
assume a perfect recovery of signal symbols.  Azzouz 
and Nandi�s classifier recognize both analog and digital 
modulation types.  The digital modulation includes: 
ASK2, ASK4, FSK2, FSK4, PSK2, and PSK4, Figure 1.  
The standard-deviation of modulation parameters: 
nonlinear component of the phase, the absolute value of 
the nonlinear component of the phase, the absolute 
value of the normalized-centered instantaneous 
amplitude, and the absolute value of the normalized-
centered frequency are used as features.  These standard 
deviation features are used together with the amplitude 
power spectrum density in a logic flowchart to match 
the predetermined feature thresholds to determine the 
modulation type.  Reference [5] is a good tutorial for 
this type of general modulation recognition. However, 
the variance of the nonlinear component of the phase 
and the variance of the absolute value of the nonlinear 
component of the phase require the removal of the 
center frequency and linear phase components from the 
carried signal.  Since most communication systems 
employ some type of filtering prior to transmission for 
shaping the signal for bandwidth efficiency, as shown in 
Figure 2, the pulse function of a PSK signal will have a 
smooth transition and the pulse shape will not be as 
rectangular as shown by the dashed-line of Figure 2.  
The linear component of the phase will not be removed 
easily.  In this case, the performance of phase variation 
and absolute phase variation tests will be failed.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Furthermore, if the center frequency is not removed 
perfectly, the phase samples 
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drift in time as shown in Figures 3 for a BPSK 
modulation and Figure 8 for a PSK8 modulation, where 

 is the sampling frequency and  is the center 
frequency offset.  Carrier timing is another issue in this 
approach, if one of the PSK phase states is located close 
to the constellation point π as shown in Figure 4, the 
phase plot may wrap between -π and π , as shown in 
Figure 5, due to the random noise.  This wrap effect 
may generate large phase variations to fail the standard 
deviation test. 
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Figure 3  Phase Plot of A BPSK Signal with CFO 
Q 
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Figure 1.  Feature Variation Analysis Modulation Classifier Figure 4  Constellation Diagram of BPSK 

Figure 5  Phase Plot of A BPSK Signal with Phase Wrap
samples 

Figure 2  Phase Plot of A PSK Signal 
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Q This approach may be extended [7] by adding a 
frequency estimator, a symbol phase tracker, and a 
timing device as shown in Figure 6. The frequency 
estimator provides the instantaneous center frequency of 
the IF signal.  The frequency variance can be used to 
determine if it is a single tone modulation type. If the 
frequency variance is large, the standard deviations of 
the estimated frequency and the absolute value of the 
frequency are sent to recognition block. Otherwise, the 
signal will be down modulated to base-band using the 
estimated center frequency. A timing-recovery circuit is 
applied to extract amplitude, phase, and frequency 
symbols. Since the carrier estimated by the frequency 
estimator may not be accurate and the center frequency 
may be unstable, a phase tracking and correction block 
has to be used to remove the residual carrier frequency 
and prevent phase warp. Figure 7 illustrates that the 
phase drift of the PSK2 signal in Figure 3 is corrected 
by using a blind carrier phase tracking algorithm [8]. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To solve the center frequency offset problem, Liedtke 
[9] adapted delta-phase (the phase difference between 
two adjacent phase symbols) as a feather rather than 
phase itself.  Figure 8 illustrates the constellation 
diagram of a PSK8 signal with center frequency offset. 
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Figure 8.  Phase Constellation Diagram of PSK8  
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Figure 6.  Modified Feature Variation Analysis Classifier  
 Figure 9.  Delta-Phase Constellation Diagram of PSK8 
 
The PSK8 phase feature cannot be observed due to the 
phase rotation caused by center frequency offset.  Figure 
9 shows the same signal plotted with delta phase.  The 
clusters of PSK8 are recovered.  Liedtke recognizes 
modulation types: ASK2, FSK2, PSK2, PSK4, PSK8 
and CW, Figure 10, by utilizing the histograms of delta-
phase. This algorithm only assumes to roughly know the 
center frequency of the signal and symbol rate.  The 
signal is converted to almost base-band with the residual 
center frequency by using a concentric FIR filter bank 
centered at the center frequency.  A symbol recovery 
circuit is employed to extract a sinusoidal waveform 
with an appropriately tuned narrow band pass filter 
centered at the symbol rate. This waveform is used to 
recover the PSK and FSK symbols.  Then, the symbol 
amplitudes and the delta-phase are obtained.  The 
frequency measurement is conducted by taking the 
phase difference of two time samples. The amplitude 
variance and frequency variance are used as features for 
separating modulation types among PSK, ASK, and 
FSK. The delta-phase histogram is used for probability 
density analysis to separate PSK2, PSK4, and PSK8. An 

samples 

Figure 7.  Corrected Phase Plot of BPSK with CFO 
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addition-only sub-optimal histogram separation process 
is used to recognize PSK modulation types 
automatically.  The advantage of using the delta-phase 
as a feature is that the center frequency offset will be 
eliminated in PSK recognition. Figures 11 and 12 show 
the deference between phase sample histogram and the 
delta-phase symbol histogram of a DQPSK signal.  
Furthermore, with the timing recovery circuit, all feature 
parameters are observed at the Nyquist sampling rate, 
and pulse shaping will no longer significantly affect the 
recognition result.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This approach may be extended [10] by adding a 
frequency estimator and an automated timing-recovery 
device to replace the manual tuning.  Since the delta-
phase is used as the phase feature, the residual carrier 
frequency will be eliminated and the phase tracking and 
correction operation is not needed.  If the frequency 
variance is larger than the threshold value, FSK 
modulation recognition will be considered. Otherwise, 
the signal will be down modulated and CW/PSK/ASK 
modulation recognition will be processed.  The 
modulation feature recognition of the phasor variation 
analysis approach could be conducted by comparing the 
feature variances to thresholds [5, 6, 9, 25, 26].  Since 
the variance is quite sensitive to SNR, this method is 
better being used for top-level classification.  
Histograms analysis [9, 25, 26] is another frequently 
used technique and it is usually use for PSK modulation 
types.  If the perfect symbol recovery is possible, 
maximum likelihood classifiers [11-21] will be an 
optimal approach for MPSK and QAM modulation 
recognitions.  It may also be possible to treat 
constellation plot as image pixels so that many image 
recognition algorithms [22-24] can be useful in 
classifying the PSK and QAM modulation types. 

After 
coarse 
carrier 
removal 

Figure 10. Universal Demodulator 

 
 Figure 12  Histogram of Delta-Phase Symbols of DQPSK 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13  Modified Universal Demodulator 

B. Zero-Crossing Modulation Classifier π
 

Figure 11  Histogram of Phase Samples of DQPSK Hsue and Soliman [25,26] introduced a modulation 
recognizer for PSK2, PSK4, PSK8, FSK2, FSK4, and 
FSK8 modulation types based only on the zero-crossing 
characteristics of signals as shown in Figure 14. The 
modulation classification procedure extracts the zero-
crossing interval sequence for frequency estimation. The 
estimated frequency is then used together with the zero-
crossing sequence for phase estimation. Similar to 
Liedtke�s method, variances are used to separate FSK 
from single tone signals, and delta-phase histograms are 
used for parameter variation estimation of PSK signals.  
Variance thresholds, histogram templates, and 
likelihood ratio tests are employed for making the 
modulation decision. Frequency histogram is used for 
FSK recognition although the classification of a 
frequency histogram is not trivial.  Unlike Liedtke�s 
method, Hsue and Soliman use zero-crossing carrier 

π
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estimation instead of manual tuning. Although the 
estimation is not accurate enough to provide a precise 
carrier frequency, the delta-phase approach will 
overcome the center frequency offset in PSK 
recognition. However, the accuracy of zero-crossing 
frequency estimation is very sensitive to the SNR as 
shown in Figures 15 and 16.  When SNR is low, the 
noise may produce additional zero-crossing points.  A 
good resolution of zero-crossing measurement requires a 
very high sampling rate as shown in Figure 15 for a 
BPSK signal, where the solid-line is has 80 samples per 
symbol and the dashed-line has only 4 samples per 
symbol.  The low sample rate will reduce recognition 
performance greatly, but the high sample rate will pick 
up thermal noises.  Since some data collecting devices 
requires only two samples per symbol, zero-crossing 
modulation classifier has to up-sample the data before 
processing.  Our simulation also shows that the rising-
edge/falling edge zero-crossing estimation is less noisy 
than the either-edge zero-crossing estimation as shown 
in Figure 16, where the smooth dashed-line stands for 
the frequency estimation of a FSK signal using rising-
edge zero-crossing and the noisy solid-line stands for 
the frequency estimation using either-edge zero-
crossing.  Furthermore, zero-crossing frequency 
estimation may yield a single frequency result for an 
unknown signal with multiple instantaneous 
frequencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 16  Zero-crossing Frequency Plot of A FSK Signal

 
 
 
 
 
 
 
 
 
 
 Figure 17.  Power-Law Modulation Classifier 
 
 
C. Power-Law Modulation Classifier 

 

DeSimio and Glenn [27] introduced a technique to 
classify digital modulations: ASK2, PSK2, PSK4, and 
FSK2, as shown in Figure 17.  In this recognizer a 
power-law classification is conducted to obtain the 
squared and the fourth power of a signal.  Therefore, 
the key features are magnitude and location of the 
spectrum peaks in the frequency domain. That is, the 
magnitude of the spectral component at twice the 
carrier frequency of the signal raised to the second 
power, or the magnitude of the spectral component at 
four times the carrier frequency of the signal raised to 
the fourth power.  For example, Figure 18 is the 
frequency spectrum of 100 symbols of a QPSK signal 
with center frequency fc at 12 KHz, sampling frequency 
at 160 KHz, and SNR=10dB.  Figure 19 is the spectrum 
of the same signal after taking the forth power.  A peak 
of 4fc is shown at 48 KHz, which indicates the QPSK 
modulation type.  This peak will not be seen in Figure 
18 or in the spectrum of the squared signal.  The mean 
and variance of the signal envelope are used for ASK 
recognition. A decision tree is used to recognize 
modulation type based on the values of above features. 
The concept of power-law classification is based on the 
fact that squaring of an MPSK signal is another PSK 

Figure 14.  Zero-Crossing Modulation Classifier

Figure15.  BPSK signal with Two Different Sampling Rates 

 
 

 

Proceedings of the International Symposium on Advanced Radio Technologies, NTIA Special Publication SP-03-401, March 2003

85



with M/2 phase states.  The power-law approach has the 
convenience of recognizing modulation type without 
converting the signal to base-band.  Although band pass 
filtering of the spectrum peak requires knowledge of the 
center frequency, the exact carrier frequency and pulse 
shape are not necessary.  However, this method is 
limited by the sampling rate. The signal must be 
sufficiently over-sampled (for example: 2X for PSK2 or 
4X for PSK4) in order to satisfy the sampling theorem.  
Figure 20 shows the same signal sampled at a lower 
rate of 80 KHz. Since the sampling theorem limit the 
frequency range to 40 KHz, the peak at 48KHz will not 
be displayed at Figure 20.  Although the image of 4fc 
exists at 32 KHz, it is too noisy to be properly detected.  
The peak of 4fc can be detected by correlating the 
spectrum of the signal with a sinc2(x) reference function 
[27], but a high resolution spectrum may be needed.  
Our simulation also shows that the detection of 
spectrum peak becomes more difficult if the pulse 
shaping is used.  The capability in FSK modulation 
recognition is limited in this approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dB 

 
Figure 20  Under-Sampled QPSK Signal with Forth-Power

 
 

III. CONCLUSION 
 

Some well-known modulation recognition algorithms 
are studied and simulated.  The comparison of 
modulation recognition algorithms is not 
straightforward since algorithms are developed under 
different motivations and they are all good in solving 
certain problems.  Our analysis is based on our 
application requirements, which may not apply to other 
cases.  All signal plots used in this paper are simulated 
by MATLAB software and are not associated with any 
commercial or military devices/systems.  Modulation 
classifiers may be sensitive to center frequency offset, 
and pulse shaping, symbol or carrier timing, and 
sampling frequency.  The assumptions, limitations, and 
the fundamental similarities and differences between the 
algorithms should be explored in algorithm comparison. 

dB 
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